Automate website quality assurance and bug detection through AI-powered analysis. Comprehensive website auditing that combines automated crawling, performance testing, and intelligent issue detection.

Features

  • Automated Website Crawling: Systematic analysis of HTML, CSS, JavaScript, and PHP files
  • Multi-dimensional Quality Checks: SEO, accessibility, security, performance, and UI evaluation
  • Performance Analysis: Integration with Google PageSpeed Insights for mobile and desktop metrics
  • Detailed Reporting: Generates structured reports with actionable recommendations
  • Real-time Processing: Live streaming of analysis results with progress tracking

How It Works

The QA Agent processes websites through a comprehensive analysis pipeline:
URL Input → Content Scraping → Code Analysis → Performance Testing → Report Generation

Architecture Overview

Processing Pipeline

  1. Content Extraction: Scrapes and parses all website resources
  2. Code Analysis: LLM-powered evaluation against quality checklists
  3. Performance Testing: Google PageSpeed API integration for speed metrics
  4. Report Generation: Combines findings into structured Excel reports
  5. Storage & Delivery: Uploads reports to S3 and provides download links

Core Components

ComponentPurpose
Web ScraperExtracts HTML, CSS, JS, and PHP files
Content FilterCleans and optimizes code for analysis
LLM ChainProcesses content against quality checklists
PageSpeed APIRetrieves performance metrics
Report GeneratorCreates structured Excel reports
Queue ManagerHandles real-time result streaming

Implementation

Analysis Workflow

def analyze_website(url):
    # 1. Initialize components
    llm = initialize_llm()
    queues = setup_analysis_queues()
    
    # 2. Extract website content
    scraped_content = scrape_url_content(url)
    filtered_content = filter_code_lines(scraped_content)
    
    # 3. Performance analysis
    pagespeed_results = pagespeed_api_call(url, ['mobile', 'desktop'])
    
    # 4. Content analysis
    token_count = count_tokens(filtered_content)
    analysis_chain = initialize_llm_chain(llm)
    
    # 5. Batch processing
    checklist_batches = batch_checklist_items(filtered_content, batch_size=10)
    
    # 6. Execute analysis
    for batch in checklist_batches:
        results = analysis_chain.process(batch)
        stream_to_queue(results, queues['checklist'])
    
    # 7. Generate report
    excel_report = create_excel_report(checklist_results, pagespeed_results)
    s3_url = upload_to_s3(excel_report)
    
    # 8. Return results
    return {
        'pagespeed_data': pagespeed_results,
        'report_url': s3_url,
        'token_usage': calculate_cost(token_count),
        'processing_time': elapsed_time
    }

Key Functions

FunctionPurpose
scrape_url_content()Extracts all website files and resources
pagespeed_api_call()Retrieves Google PageSpeed metrics
batch_checklist_items()Organizes analysis tasks into processable chunks
stream_to_queue()Provides real-time progress updates
create_excel_report()Generates formatted analysis reports

API Reference

Analysis Endpoint

POST /api/qa-analysis
Request Body
{
  "url": "https://example.com",
  "analysisType": "comprehensive",
  "options": {
    "includeMobile": true,
    "includeDesktop": true,
    "generateReport": true
  }
}
Response Format
{
  "analysisId": "qa_12345",
  "status": "completed",
  "results": {
    "seoScore": 85,
    "performanceScore": 78,
    "accessibilityScore": 92,
    "bestPracticesScore": 88
  },
  "reports": {
    "excelUrl": "https://s3.amazonaws.com/reports/qa_12345.xlsx",
    "jsonData": { ... }
  },
  "metrics": {
    "tokenUsage": 2500,
    "processingTime": "45s",
    "pagesAnalyzed": 12
  }
}

Streaming Analysis

GET /api/qa-analysis/{analysisId}/stream
Returns Server-Sent Events for real-time progress updates:
data: {"type": "progress", "step": "scraping", "completion": 25}
data: {"type": "result", "category": "seo", "issues": [...]}
data: {"type": "complete", "reportUrl": "https://..."}

Configuration

Analysis Parameters

ParameterTypeDefaultDescription
batchSizeinteger10Checklist items per LLM call
maxPagesinteger50Maximum pages to analyze
includeSubdomainsbooleanfalseAnalyze subdomain pages
performanceThresholdinteger70Minimum acceptable performance score

Supported Check Categories

  • SEO Analysis: Meta tags, structured data, URL structure
  • Performance: Load times, resource optimization, Core Web Vitals
  • Accessibility: WCAG compliance, keyboard navigation, screen reader support
  • Security: HTTPS usage, security headers, vulnerability scanning
  • Code Quality: HTML validation, CSS optimization, JavaScript errors

Usage Examples

Basic Website Analysis

curl -X POST /api/qa-analysis \
  -H "Content-Type: application/json" \
  -H "Authorization: Bearer your-api-key" \
  -d '{
    "url": "https://example.com",
    "analysisType": "comprehensive"
  }'

Custom Analysis with Options

curl -X POST /api/qa-analysis \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://example.com",
    "analysisType": "performance",
    "options": {
      "includeMobile": true,
      "includeDesktop": false,
      "maxPages": 25
    }
  }'

Python Implementation

import requests

response = requests.post('/api/qa-analysis', json={
    'url': 'https://example.com',
    'analysisType': 'comprehensive',
    'options': {
        'generateReport': True,
        'includeSubdomains': False
    }
})

analysis = response.json()
print(f"Analysis ID: {analysis['analysisId']}")
print(f"Report URL: {analysis['reports']['excelUrl']}")

Performance & Limits

Processing Metrics

  • Average Analysis Time: 30-90 seconds per website
  • Concurrent Analyses: Up to 5 websites simultaneously
  • Page Limit: 50 pages per analysis (configurable)

Rate Limits

  • API Requests: 50 analyses per hour per API key
  • Concurrent Jobs: 5 active analyses
  • Token Usage: Tracked and reported per analysis

File Constraints

  • Website Size: No explicit limit (processed page by page)
  • Analysis Depth: Configurable crawl depth (default: 3 levels)
  • Report Size: Excel reports typically 1-5MB

Error Handling

Common Error Responses

Status CodeError TypeDescriptionSolution
400INVALID_URLURL format invalid or unreachableVerify URL format and accessibility
429RATE_LIMIT_EXCEEDEDToo many concurrent analysesWait before starting new analysis
500SCRAPING_FAILEDUnable to extract website contentCheck website accessibility and robots.txt
503PAGESPEED_UNAVAILABLEGoogle PageSpeed API errorRetry analysis or skip performance metrics

Error Response Format

{
  "error": {
    "code": "SCRAPING_FAILED",
    "message": "Unable to access website content",
    "details": {
      "url": "https://example.com",
      "httpStatus": 403,
      "reason": "Access forbidden by robots.txt"
    }
  }
}

Integration Guide

Authentication

All API requests require Bearer token authentication:
curl -H "Authorization: Bearer your-api-key" \
     -H "Content-Type: application/json"

Webhook Notifications

Configure webhooks for analysis completion:
{
  "webhookUrl": "https://your-app.com/qa-complete",
  "events": ["analysis.completed", "analysis.failed"]
}

Report Processing

Excel reports include multiple worksheets:
  • Summary: Overall scores and key findings
  • SEO Issues: Detailed SEO recommendations
  • Performance: PageSpeed metrics and optimization suggestions
  • Accessibility: WCAG compliance issues
  • Security: Security headers and vulnerability findings